Главная Диабету нет!

Островок здоровья



Анатомия и физиология островкового аппарата поджелудочной железы





Поджелудочная железа (pancreas) расположена на задней стенке брюшной полости, позади желудка, на уровне LI - LII и простирается от двенадцатиперстной кишки до ворот селезенки. Длина ее составляет около 15 см, вес - около 100 г. В поджелудочной железе различают головку, располагающуюся в дуге двенадцатиперстной кишки, тело и хвост, достигающий ворот селезенки и лежащий ретроперитонеально. Кровоснабжение поджелудочной железы осуществляется селезеночной и верхней мезентериальной артерией. Венозная кровь поступает в селезеночную и верхнюю мезентериальную вены. Иннервируется поджелудочная железа симпатическими и парасимпатическими нервами, терминальные волокна которых контактируют с клеточной мембраной островковых клеток.

Поджелудочная железа является смешанной железой, включающей экзокринную и эндокринную части. В экзокринной части вырабатывается панкреатический сок, богатый пищеварительными ферментами - трипсином, липазой, амилазой и др., поступающий по выводному протоку в двенадцатиперстную кишку, где его ферменты участвуют в расщеплении белков, жиров и углеводов до конечных продуктов. В эндокринной части синтезируется ряд гормонов - инсулин, глюкагон, соматостатин, панкреатический полипептид, принимающие участие в регуляции углеводного, белкового и жирового обмена в тканях и др.

Развитие. Поджелудочная железа развивается из энтодермы и мезенхимы. Ее зачаток появляется в конце 3-й недели эмбриогенеза в виде дорсального и вентральных выпячиваний стенки туловищного отдела эмбриональной кишки, врастающих в брыжейку. Из них формируются головка, тело и хвост железы. На 3-м месяце плодного периода энтодермальные зачатки начинают дифференцироваться на экзокринные и эндокринные отделы железы. В экзокринных отделах образуются ацинусы и выводные протоки, а эндокринные отделы, вначале имеющие вид почек на выводных протоках, затем отшнуровываются от них и превращаются в островки. Из мезенхимы развиваются соединительнотканные элементы стромы, а также сосуды.

Строение. Пожелудочная железа с поверхности покрыта тонкой соединительтканной капсулой, срастающейся с висцеральным листком брюшины. Ее паренхима разделена на дольки, между которыми проходят соединительнотканные тяжи. В них расположены кровеносные сосуды, нервы, интрамуральные нервные ганглии, пластинчатые тельца и выводные протоки (рис. 1). Дольки включают экзокринные и эндокринные части железы. На долю первой части приходится около 97%, а второй - до 3% всей массы железы.

Экзокринная часть железы в дольках представлена панкреатическими ацинусами, вставочными и внутридольковыми протоками, а также междольковыми протоками и общим панкреатическим протоком, открывающимся в двенадцатиперстную кишку.

Структурно-функциональной единицей экзокринной части поджелудочной железы является панкреатический ацинус (acinus pancreaticus). Он включает секреторный отдел и вставочный проток, которым начинается вся протоковая система железы. Внешне ацинус напоминает мешочек размером 100-150 мкм. Между ацинусами располагаются ретикулярные волокна, кровеносные капилляры, а также нервные волокна и нервные ганглии вегетативной нервной системы. Ацинусы состоят из 8-12 крупных экзокринных панкреатоцитов, или ациноцитов (acinocytus), расположенных на базальной мембране, и нескольких мелких протоковых, или центроацинозных, эпителиоцитов (рис. 1, Б).

Экзокринные панкреатоциты (ациноциты) выполняют секреторную функцию, синтезируя пищеварительные ферменты панкреатического сока. Они имеют форму конуса с суженной верхушкой и широким основанием, лежащим на базальной мембране ацинуса. Цитолемма на базальной поверхности клеток образует внутренние складки, а на апикальной поверхности — микроворсинки. Между боковыми поверхностями клеток имеются контакты типа замыкательных пластинок и десмосом. Верхушечные (апикальные) части клеток называются зимогенными зонами, а противоположные базальные части клеток — гомогенными зонами. Зимогенные зоны клеток окрашиваются кислыми красителями, т. е. появляются оксифильными. Зимогенная зона клеток в основном занята крупными секреторными гранулами (до 80 нм в диаметре). Среди них выделяют гранулы различной степени зрелости (плотности). Зимогенные гранулы содержат синтезируемые в клетках ферменты в неактивной форме, т. е. в виде зимогена. В гомогенной зоне преобладает гранулярная эндоплазматическая сеть, состоящая из массы плоских мешочков, мембраны которых усеяны рибосомами. В них осуществляется синтез ферментов панкреатического сока. Обилие рибосом обусловливает базофилию этой зоны. Ядра ацинозных клеток, содержащие 1—2 ядрышка, преимущественно располагаются в их базальной части.

В надъядерной части клеток расположен обширный комплекс Гольджи. Митохондрии рассеяны по всей цитоплазме, но большинство их находится под цитолеммой и рядом с комплексом Гольджи. Они отличаются разнообразной формой.

Секреторную деятельность ациноциты осуществляют циклически. Их секреторный цикл, включающий фазы поглощения исходных веществ, синтеза секрета, накопления его и затем выделения по мерокриновому типу, занимает в среднем 1,5 — 2 ч. Однако в зависимости от физиологических потребностей организма в пищеварительных ферментах этот цикл может сократиться или, наоборот, увеличиться.

Выделившийся из ациноцитов секрет попадает во вставочный проток (ductus intercalatus), стенка которого состоит из мелких клеток. В одних случаях они примыкают к ациноцитам сбоку, имея общую с ними базальную мембрану, в других — проникают в центр ацинуса, располагаясь на апикальной поверхности ациноцитов. При такой локализации они называются центроацинозными эпителиоцитами (cellulae centroacinosi). Центроацинозные клетки имеют неправильную, уплощенную форму, их овальное ядро окружено узким слоем светлой цитоплазмы, бедной органеллами. На свободной, обращенной в просвет ацинуса поверхности имеются единичные микроворсинки.

Вставочные протоки переходят в межацинозные протоки (ductus interacinosi). Стенки этих протоков выстланы однослойным кубическим эпителием. Их цитолемма образует внутренние складки и микроворсинки. Клетки соедниняются друг с другом с помощью десмосом. В цитоплазме клеток много митохондрий и хорошо развит комплекс Гольджи. Существует мнение, что эпителиальные клетки протоков продуцируют жидкий компонент панкреатического сока.

Межацинозные протоки впадают в более крупные внутридольковые протоки (dustus intralobulares), стенки которых покрыты однослойным кубическим эпителием. Ядра эпителиальных клеток крупные, в цитоплазме — немногочисленные митохондрии, слабо-выраженный комплекс Гольджи, свободные рибосомы, гладкая эндоплазматическая сеть. Вокруг протоков расположена рыхлая волокнистая соединительная ткань, в которой проходят кровеносные капилляры и нервные волокна.

Внутридольковые протоки далее продолжаются в междольковые протоки (dustus interlobulares), которые лежат в соединительнотканных перегородках (септах) между дольками. Они впадают в общий проток поджелудочной железы, проходящий в ее толще от хвоста к головке, где он открывается (вместе с общим желчным протоком) в полость двенадцатиперстной кишки. Все эти протоки выстланы слизистой оболочкой, состоящей из высокого призматического эпителия и собственной соединительнотканной пластинки. В устье общего протока, кроме того, имеются циркулярно расположенные гладкие миоциты, образующие его сфинктер.

В эпителии протоков имеются бокаловидные экзокриноциты, а также эндокриноциты, вырабатывающие гормоны панкреозимин и холицистокинин. Под их влиянием стимулируются секреторная активность ациноцитов поджелудочной железы и отделение желчи из печени. В собственной пластинке протоков находятся мелкие слизистые железы.

Эндокринная часть железы в дольках представлена островками (insulae pancreaticae), лежащими между панкреатическими ацинусами (см. рис. 1; рис. 2). Они обычно имеют округлую или овальную форму, но наряду с этим могут встречаться островки лентовидной и звездчатой формы. В среднем их диаметр колеблется от 100 до 300 мкм. Наибольшее количество островков располагается в хвостовой части железы. Общее их число колеблется от 1 до 2 млн. и более, но при этом их объем не превышает 3% объема всей железы.

Островки состоят из эндокринных клеток — инсулоцитов (insulocyti), между которыми находятся кровеносные капилляры фенестрированного типа, окруженные перикапиллярным пространством. Именно сюда прежде всего поступают инсулярные гормоны, а затем через стенку капилляров — в кровь.

Инсулоциты в отличие от ацинозных имеют меньшие размеры. В их цитоплазме умеренно развита гранулярная эндоплазматическая сеть, но хорошо представлены комплекс Гольджи, митохондрии (мелкие) и секреторные гранулы (рис. 3). Эти гранулы по своим физико-химическим и морфологическим свойствам неодинаковы в различных клетках островков. На этом основании среди инсулярных клеток различают 5 основных видов: В-клетки (базофильные), А-клетки (ацидофильные), D-клетки (дендритические), D1-клетки (аргирофильные) и РР-клетки.

В-клетки составляют основную массу клеток островков (около 70—75%). Большая часть их лежит в центре островков. Секреторные В-гранулы клеток не растворяются в воде, но полностью растворяются в спирте. Они проявляют базофильные свойства, окрашиваясь альдегидфуксином, генциановым фиолетовым в синий цвет. Гранулы имеют размер около 275 нм. Между их содержимым и покрывающей мембраной имеется широкий светлый ободок. В некоторых гранулах содержится плотная кристаллическая структура, в которой обнаруживается цинк. Гранулы В-клеток состоят из гормона инсулина, синтезирующегося в этих клетках. Одним из наиболее ярких эффектов инсулина является его гипогликемическое действие, так как он способствует усвоению глюкозы крови клетками тканей. Поэтому при недостатке инсулина количество глюкозы в тканях снижается, а содержание ее в крови резко возрастает, что приводит к сахарному мочеизнурению (сахарный диабет).

А-клетки составляют примерно 20—25% от всей массы инсулярных клеток. В островках они занимают преимущественно периферическое положение. А-гранулы клеток устойчивы к спирту, но растворяются в воде. Они обладают оксифильными свойствами, в связи с чем окрашиваются кислым фуксином, в ярко-красный цвет. Размеры гранул около 230 нм. Их плотное содержимое отделено от окружающей мембраны узким светлым ободком. В гранулах А-клеток обнаружен гормон глюкагон. По своему действию он является антагонистом инсулина. Под его влиянием в тканях происходит усиленное расщепление гликогена до глюкозы. В связи с этим в случаях его недостатка количество глюкозы в крови может снижаться.

Следовательно, инсулин и глюкагон строго поддерживают постоянство сахара в крови и определяют содержание гликогена в тканях (прежде всего в печени).

D-клетки, число которых востровках невелико (5—10%), располагаются в основном на их периферии, имеют грушевидную и реже звездчатую форму. D-гранулы среднего размера (325 нм), умеренной плотности и лишены светлого ободка. D-клетки секретируют гормон соматостатин. Этот гормон задерживает выделение инсулина и глюкагона А- и В-клетками, а также подавляет синтез ферментов ацинозными клетками поджелудочной железы. В небольшом числе в островках находятся D1-клетки, содержащие мелкие (160 нм) аргирофильные гранулы, значительной плотности с узким светлым ободком. Этот вид клеток выделяет вазоактивный интестинальный полипептид (ВИП), который снижает артериальное давление, стимулирует выделение сока и гормонов поджелудочной железой.

РР-клетки (2—5%) вырабатывают панкреатический полипептид, стимулирующий выделение желудочного и панкреатического сока. Это полигональные клетки с очень мелкими зернами в цитоплазме (размер гранул не более 140 нм). РР-клетки обычно локализуются по периферии островков в области головки железы, а также встречаются вне островков среди экзокринных отделов и протоков.

Центроацинозный эпителиоцит

Помимо экзокринных (ацинозных) и эндокринных (инсулярных) клеток, в дольках поджелудочной железы описан еще один тип секреторных клеток — промежуточные, или ацинозно-инсулярные клетки (рис. 4). Происхождение их дискуссионно. Скорее всего, это самостоятельный тип клеток. Они располагаются группами вокруг островков среди экзокринной паренхимы. Характерной особенностью промежуточных клеток является наличие в них гранул двух типов — крупных зимогенных, присущих ацинозным клеткам, и мелких, типичных для инсулярных клеток (А, В, D, РР).

Их митохондрии делятся по величине на крупные и мелкие, а гранулярная эндоплазматическая сеть по степени развития занимает промежуточное положение. Гранулы ацинозно-инсулярных клеток напоминают гранулы одного из видов клеток островков — А, В или D. В связи с этим предложено классифицировать ацинозно-инсулярные клетки по их гормональному профилю на три типа: А, В и D. Большая часть ацинозно-инсулярных клеток выделяет в кровь как эндокринные, так и зимогенные гранулы. Реже встречаются клетки, из которых те и другие гранулы поступают в выводные протоки железы.

Согласно одному из предположений, ацинозно-инсулярные клетки выделяют в кровь трипсиноподобные ферменты, которые освобождают из проинсулина активный инсулин.

Эндокринная функция осуществляется островками Лангерганса, которые составляют около 1-3% массы железы (от 1 до 1,5 млн). Диаметр каждого - около 150 мкм. В одном островке содержится от 80 до 200 клеток.

Различают несколько их видов по способности секретировать полипептидные гормоны.

  • А-клетки продуцируют глюкагон,
  • В-клетки - инсулин,
  • D-клетки - соматостатин,
  • РР-клетки - вазоактивный интерстициальный полипептид (ВИП), гастроинтестинальный пептид (ГИП) и панкреатический полипептид.

Основную массу - 60% клеток составляют В-клетки, локализуются в центре островка, а остальные - по его периферии: 25% - А-клетки, 10% - D-клетки, РР-клетки - 5% массы.

Васкуляризация. Поджелудочная железа снабжается кровью, приносимой по ветвям чревной и верхней брыжеечной артерий. Разветвления этих артерий в междольковой соединительной ткани и внутри долек образуют густые капиллярные сети, оплетающие ацинусы и проникающие в островки. Существует мнение, что эти капиллярные сети между собой не сообщаются. Согласно другому предположению, в дольках железы существует портальная система сосудов, когда приносящая артериола распадается на капилляры островков, а затем они собираются в выносящие артериолы, от которых начинается новая сеть капилляров, оплетающих ацинусы экзокринных отделов железы. Оттекающая от поджелудочной железы венозная кровь поступает в воротную вену.

Лимфатическая система начинается щелевидными капиллярами вокруг ацинусов и островков. Лимфатические капилляры вливаются в лимфатические сосуды, которые проходят поблизости от кровеносных.

Иннервация. Эфферентная иннервация поджелудочной железы осуществляется блуждающим и симпатическими нервами. Симпатические волокна сопровождают кровеносные сосуды, являясь по своему значению сосудодвигательными. В поджелудочной железе имеются интрамуральные вегетативные ганглии. Основную массу их нервных клеток составляют холинергические нейроны. Вместе с тем в ганглиях содержатся и пептидергические нейроны, секретирующие полипептидные гормоны. Нервные волокна холинергических и пептидергических нейронов заканчиваются на клетках панкреатических ацинусов и вдоль капилляров проходят в островки, регулируя секреторную функцию железы.

Чувствительные нервные волокна образуют в междольковой соединительной ткани разнообразные рецепторы, в том числе пластинчатые тельца.

Возрастные изменения. В поджелудочной железе они прежде всего проявляются в изменении соотношения между ее экзокринной и эндокринной частями. Островки наиболее сильно развиты в железе в первые годы жизни. С возрастом их число постепенно уменьшается.

Регенерация. Пролиферативная (митотическая) активность клеток поджелудочной железы крайне низкая, поэтому в физиологических условиях в ней происходит обновление клеток путем внутриклеточной регенерации.

Структура проинсулина

Синтез инсулина

Инсулин

Инсулин образуется в В-клетках из его предшественника - проинсулина, который синтезируется на рибосомах грубой эндоплазматической сети. Проинсулин состоит из 3 пептидных цепей (А, В, и С). А- и В-цепочки соединены дисульфидными мостиками, С-пептид связывает А- и В-цепи (рис. 42). Молекулярный вес проинсулина - 9000 дальтон. Синтезированный проинсулин поступает в аппарат Гольджи, где под влиянием протеолитических ферментов расщепляется на молекулу С-пептида с молекулярным весом 3000 и молекулу инсулина с молекулярным весом 600 (рис. 43). A-цепь инсулина состоит из 21 аминокислотного остатка, В-цепь - из 30, а С-пептид - из 27-33. Предшественником проинсулина в процессе его биосинтеза является препроинсулин, который отличается от первого наличием еще одной пептидной цепочки, состоящей из 23 аминокислот и присоединяющейся к свободному концу В-цепи. Молекулярный вес препроинсулина - 11 500. Он быстро превращается в проинсулин на полисомах. Из аппарата Гольджи (пластинчатый комплекс) инсулин, С-пептид и частично проинсулин поступают в везикулы, где первый связывается с цинком и депонируется в кристаллическом состоянии. Под влиянием различных стимулов везикулы продвигаются к цитоплазматической мембране и путем эмиоцитоза освобождают инсулин в растворенном виде в прекапиллярное пространство.

Самый мощный стимулятор его секреции - глюкоза, которая взаимодействует с рецепторами цитоплазматической мембраны. Ответ инсулина на ее воздействие является двухфазным:

  • первая фаза - быстрая - соответствует выбросу запасов синтезированного инсулина (1-й пул)
  • вторая - медленная - характеризует скорость его синтеза (2-й пул).

Сигнал от цитоплазматического фермента - аденилатциклазы - передается на систему цАМФ, мобилизующую из митохондрий кальций, который принимает участие в освобождении инсулина. Кроме глюкозы, стимулирующим влиянием на освобождение и секрецию инсулина обладают аминокислоты (аргинин, лейцин), глюкагон, гастрин, секретин, панкреозимин, желудочный ингибирующий полипептид, нейротензин, бомбезин, сульфаниламидные препараты, бета-адреностимуляторы, глюкокортикоиды, СТГ, АКТГ. Подавляют секрецию и освобождение инсулина гипогликемия, соматостатин, никотиновая кислота, диазоксид, альфа-адреностимуляция, фенитоин, фенотиазины.

Инсулин в крови находится в свободном (иммунореактивный инсулин; ИРИ) и связанном с белками плазмы состоянии. Деградация инсулина происходит в печени (до 80%), почках и жировой ткани под влиянием глютатион-трансферазы и глютатионредуктазы (в печени), инсулиназы (в почках), протеолитических ферментов (в жировой ткани). Проинсулин и С-пептид также подвергаются деградации в печени, но значительно медленнее.

Инсулин оказывает множественный эффект на инсулинозависимые ткани (печень, мышцы, жировая ткань). На почечную и нервную ткани, хрусталик, эритроциты он не оказывает непосредственного действия. Инсулин является анаболическим гормоном, усиливающим синтез углеводов, белков, нуклеиновых кислот и жира. Его влияние на углеводный обмен выражается в увеличении транспорта глюкозы в клетки инсулинозависимых тканей, стимуляции синтеза гликогена в печени и подавлении глюконеогенеза, и гликогенолиза, что вызывает понижение уровня сахара в крови. Влияние инсулина на белковый обмен выражается в стимуляции транспорта аминокислот через цитоплазматическую мембрану клеток, синтеза белка и торможения его распада. Его участие в жировом обмене характеризуется включением жирных кислот в триглицериды жировой ткани, стимуляцией синтеза липидов и подавлением липолиза.

Биологический эффект инсулина обусловлен его способностью связываться со специфическими рецепторами клеточной цитоплазматической мембраны. После соединения с ними сигнал через встроенный в оболочку клетки фермент - аденилатциклазу - передается на систему цАМФ, которая при участии кальция и магния регулирует синтез белка и утилизацию глюкозы (рис. 44).

Схема действия инсулина

Базальная концентрация инсулина, определяемая радиоиммунологически, составляет у здоровых 15-20 мкед/мл. После пероральной нагрузки глюкозой (100 г) уровень его через 1 ч повышается в 5-10 раз по сравнению с исходным. Скорость секреции инсулина натощак составляет 0,5-1 ед/ч, а после приема пищи увеличивается до 2,5-5 ед./ч. Секрецию инсулина увеличивает парасимпатическая и уменьшает симпатическая стимуляция.

Глюкагон

Глюкагон является одноцепочечным полипептидом с молекулярным весом 3485 дальтон. Он состоит из 29 аминокислотных остатков. Расщепляется в организме при помощи протеолитических ферментов. Секрецию глюкагона регулируют глюкоза, аминокислоты, гастроинтестинальные гормоны и симпатическая нервная система. Ее усиливают гипогликемия, аргинин, гастроинтестинальные гормоны, особенно панкреозимин, факторы, стимулирующие симпатическую нервную систему (физическая нагрузка и др.), уменьшение содержания в крови СЖК. Угнетают продукцию глюкагона соматостатин, гипергликемия, повышенный уровень СЖК в крови. Содержание глюкагона в крови повышается при декомпенсированном сахарном диабете, глюкагономе. Период полураспада глюкагона составляет 10 мин. Инактивируется он преимущественно в печени и почках путем расщепления на неактивные фрагменты под влиянием ферментов карбо-ксипептидазы, трипсина, химотрипсина и др.

Основной механизм действия глюкагона характеризуется увеличением продукции глюкозы печенью путем стимуляции его распада и активации глюконеогенеза. Глюкагон связывается с рецепторами мембраны гепатоцитов и активирует фермент аденилатциклазу, которая стимулирует образование цАМФ. При этом происходит накопление активной формы фосфорилазы, участвующей в процессе глюконеогенеза. Кроме того, подавляется образование ключевых гликоли-тических ферментов и стимулируется выделение энзимов, участвующих в процессе глюконеогенеза. Другая глюкагонзависимая ткань - жировая. Связываясь с рецепторами адипоцитов, глюкагон способствует гидролизу триглицеридов с образованием глицерина и СЖК. Этот эффект осуществляется путем стимуляции цАМФ и активации гормоночувствительной липазы. Усиление липолиза сопровождается повышением в крови СЖК, включением их в печень и образованием кетокислот. Глюкагон стимулирует гликогенолиз в сердечной мышце, что способствует увеличению сердечного выброса, расширению артериол и уменьшению общего периферического сопротивления, уменьшает агрегацию тромбоцитов, секрецию гастрина, панкреозимина и панкреатических ферментов. Образование инсулина, СТГ, кальцитонина, катехоламинов, выделение жидкости и электролитов с мочой под влиянием глюкагона увеличиваются. Его базальный уровень в плазме крови составляет 50-70 пг/мл. После приема белковой пищи, во время голодания, при хронических заболеваниях печени, ХИН, глюкагономе содержание глюкагона увеличивается.

Соматостатин

Соматостатин представляет собой тетрадекапептид с молекулярным весом 1600, состоящий из 13 аминокислотных остатков с одним дисульфидным мостиком. Впервые соматостатин был обнаружен в переднем гипоталамусе, а затем - в нервных окончаниях, синаптических пузырьках, поджелудочной железе, желудочно-кишечном тракте, щитовидной железе, сетчатке. Наибольшее количество гормона образуется в переднем гипоталамусе и D-клетках поджелудочной железы. Биологическая роль соматостатина заключается в подавлении секреции СТГ, АКТГ, ТТГ, гастрина, глюкагона, инсулина, мотиллина, ренина, секретина, вазоактивного желудочного пептида (ВЖП), желудочного сока, панкреатических ферментов и электролитов. Он понижает абсорбцию ксилозы, сократимость желчного пузыря, кровоток внутренних органов (на 30-40%), перистальтику кишечника, а также уменьшает освобождение ацетилхолина из нервных окончаний и электровозбудимость нервов. Период полураспада парентерально введенного соматостатина составляет 1-2 мин, что позволяет рассматривать его как гормон и нейротрансмиттер. Многие эффекты соматостатина опосредуются через его влияние на вышеперечисленные органы и ткани. Механизм же его действия на клеточном уровне пока неясен. Содержание соматостатина в плазме крови здоровых лиц составляет 10-25 пг/л и повышается у больных сахарным диабетом I типа, акромегалией и при D-клеточной опухоли поджелудочной железы (соматостатиноме).

Роль инсулина, глюкагона и соматостатина в гомеостазе. В энергетическом балансе организма основную роль играют инсулин и глюкагон, которые поддерживают его на определенном уровне при различных состояниях организма. Во время голодания уровень инсулина в крови понижается, а глюкагона - повышается, особенно на 3-5-й день голодания (примерно в 3-5 раз). Увеличение секреции глюкагона вызывает повышенный распад белка в мышцах и увеличивает процесс глюконеогенеза, что способствует пополнению запасов гликогена в печени. Таким образом, постоянный уровень глюкозы в крови, необходимый для функционирования мозга, эритроцитов, мозгового слоя почек, поддерживается за счет усиления глюконеогенеза, гликогенолиза, подавления утилизации глюкозы другими тканями под влиянием увеличения секреции глюкагона и уменьшения потребления глюкозы инсулинозависимыми тканями в результате снижения продукции инсулина. В течение суток мозговая ткань поглощает от 100 до 150 г глюкозы. Гиперпродукция глюкагона стимулирует липолиз, что повышает в крови уровень СЖК, которые используются сердечной и другими мышцами, печенью, почками в качестве энергетического материала. При длительном голодании источником энергии становятся и кетокислоты, образующиеся в печени. При естественном голодании (в течение ночи) или при длительных перерывах в приеме пищи (6-12 ч) энергетические потребности инсулинзависимых тканей организма поддерживаются за счет жирных кислот, образующихся во время липолиза.

После приема пищи (углеводистой) наблюдается быстрое повышение уровня инсулина и уменьшение содержания глюкагона в крови. Первый вызывает ускорение синтеза гликогена и утилизацию глюкозы инсулинозависимыми тканями. Белковая пища (например, 200 г мяса) стимулирует резкий подъем концентрации в крови глюкагона (на 50-100%) и незначительный - инсулина, что способствует усилению глюконеогенеза и увеличению продукции глюкозы печенью.

Источник:

  • Гистология: Учебник/ Ю.И.Афанасьев, Н.А.Юрина, Б.В.Алешин и др.; Под ред. Ю.И.Афанасьева, Н.А.Юриной - 4-е изд. перераб. и доп. - М.:Медицина, 1989. - 672 с.: ил. (учеб. лит. Для студ. мед. ин-тов)
  • Клиническая эндокринология: Руководство/ Под ред. Н.Т.Старковой. - М.: Медицина, 1991. - 512 с.